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Dark energy

1 < z < 4: beneficial for models poorly described by w and w’ at z=1

* Transverse and line-of-sight BAO scales: spectroscopic and photometric
galaxy surveys are mostly sensitive to transverse

2D BAO spectrum gives better constraints than spherically binned

« Sensitive to only dark matter power spectrum and four additional
parameters:

— Mass weighted neutral hydrogen fraction x_HI
— HI mass weighted halo bias <b>
— Ionizing photon mean free path k_mfp

— Fluctuations in the ionizing background K_0 (<1% suppression on
large scales since UV field is nearly uniform after reionization )

* Robust against non-linear effects in the linear and quasi-linear regimes
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Pulsars

Searches

* Local sources at low luminosities at lower frequencies

* Distant brighter objects at higher frequencies

* Deep searches of the Magellanic clouds in single pointings

* Repeated survey the entire sky: sporadic sources, intermittent sources,
rapidly precessing systems (e.g. binaries)

* Better RFI rejection with many beams

Timin
* Dedicated observations: probe emission physics, establish orbital
parameters, and test gravity

* Multiple pulsars timed simultaneously: refine pulsar ephemerides, remove
systematics effects, improving gravitational wave studies
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Approach

1. Dark Energy IM is exactly same problem as reionization

2. Leverage existing MWA, LOFAR, PAPER efforts

3. To minimize risk and development overhead:

- Design a Dark Energy array that closely builds on low-frequency heritage
- Incorporate lessons learned on foreground subtraction and calibration

4. Be ready to start construction as soon as reionization arrays
prove technique is successful
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The MWA as an example
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The MWA as an example
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The MWA as an example
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CARPE reference design

Number of antennas:
Antenna effective area:
Total collecting area:
Field of view:

Available bands:

Redshift range:

Instantaneous bandwidth:

Maximum baseline:
Angular resolution:
MOFF dimension:

Observing strategy:

Target cost:

2500 (steerable)

1.28 - 5.14 m?
3000 - 12,500 m?
~20 deg

high: 0.2 -0.5m (600-1500 MHz)
low: 0.4-1.0m (300-700 MHz)
O0<z<4

300 MHz

250 m

3 to 11 arcmin

512 x 512

3 fields, each for 2000 hours per year
(2x more efficient than drifting)

$50M
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Sensitivity scaling laws

i Al Na dA| s B k t

Power Spec. SN A* A** (dA)™V? xFOV BY*® ka(k) t

Table 2: Approximate scaling relationships for the power spectrum signal-to-noise ratio (ex-
cerpted from Morales (2005)). In order, the scalings in each column are: total array area
holding the size of each antenna constant A|;4 (adding antennas), total array area holding the
number of antennas and distribution constant A|y, (increasing antenna size), the size of each
antenna with the total array area held constant dA|,4 (dividing area into more small antennas),
the total bandwidth B, the sensitivity as a function of wavenumber length k& where n(k) is the
density of baselines (average of u, v coverage as function of wavenumber), and the total observing
time t.
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FOV and resolution requirements

z=1:
150 Mpc

8 Mpc

z=4:
150 Mpc

8 Mpc

>2.5 deg
> 25 MHz

<4 arcmin
<1 MHz

> 1.5 deg
> 15 MHz

< 2 arcmin
< 0.5 MHz

3
— cMpc / arcmin
S— cMpc / 100 kHz

0.5¢

Redshift [2]

Largest angular scale retained = largest spectral scale after foreground subtraction
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CARPE reference design
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CARPE reference design
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Instantaneous UV coverage

Antennas Baselines
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Instantaneous UV redundancy
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Point source (mis-)subtraction

 Must localize sources to 0.1” for MWA

— Scales with number of antennas, so close to ~1” for CARPE
— Only 0.5% of beam, so need SNR~200

before polynomial subtraction post-subtraction
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FIC. 5 (a)Dirty UVSUBed image of the fiekl made from V™ after the imperfect GSM (V,, ") has been subtracted from the perfect data-set (VO

(b) The image of the field after the IMLIN has been applied 1o the UVSUBed image in figure a.

Datta et al. 2009 (in press)
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Calibration error limits

* MWA residual calibration errors should be ~0.01% in
amplitude or ~0.01 degree in phase at end of integration

— Scales with number of antennas, 5x easier for CARPE
— 0.2% in amplitude and 0.2 degree in phase per day

pre-subtraction post-subtraction
10
1
10
000 Right Ascersic ‘ 000 Riast Ascension
FIC. 7. (a) Dinty UVSUBed image of the field made from the V7%, after the model visibilities corrupted with residual calibration errors (V%) has been

subtracted from the perfect data-set (V™). (b) The image of the field after the IMLIN has been applied to the UVSUBed image in figure a

Datta et al. 2009 (in press)
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Key technologies

1. MOFF correlator
2. Inexpensive broadband antennas
3. Precision calibration techniques from reionization arrays
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MOFF

Output image has the equivalent information of the FX correlator
visibilities, allowing precision deconvolution and polarimetry.

Antennas do not need to be placed on a regular grid.

Computationally efficient for compact arrays with a high spatial density of
antennas: CARPE MOFF correlator is 14 times more efficient than FX
(2.7e14 CMAC/s compared to 3.7e15 CMAC/s for FX)

MOFF correlation depends on the physical size of the array and not the
number of antennas: easily scale to ~10000 antennas with fractional
increase in computational load

A fully calibrated electric field image is created as an intermediate product.
The number of calibrated pulsar beams available is limited only by the
output bandwidth, and hardware de-dispersion can be easily incorporated.
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CARPE Antenna Concept

Richard Bradley (NRAO/UVA)
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Sierpinski carpet fractal
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Dual level: 4x4 low - 8x8 high

1.6m

1.0m
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Sinuous cone

* Inexpensive photolithographic printing -16.1

-23.3
~30.4

» >2(0 dB rear rejection w/ no ground plane
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Example return loss for 2-4 GHz case

S-Parameter Magnitude in d8
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Example return loss for 2-4 GHz case
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Trapezoidal-tooth pyramidal-type
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Trapezoidal-tooth pyramidal-type
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Green Bank Solar Radio Burst
Spectrometer
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HEFT LNA noise (unmatched)

Two Stage LNA: FHX45X, Vd=1V, Id=20mA
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System temperature
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Imaging sensitivity v. angular scale
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Observing strategy

» 3 fields, 1000-2000 hours each

* Tracking more efficient than drifting:

- SNR 2x lower for same time

- Not sample variance limited
until >1000 hours, then only on
largest scales
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Estimated uncertainty
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Figure 2: Examples of the post-reionization 21em PS at redshifts 1 (left) and 2 (right). A DLA
host mass of My, = 10" M, was assumed at each redshift. The thick light curve shows the
spherically averaged noise for the RCT, assuming 1000hr integration on each of three fields. The
sharp upturn at low k is due to the assumption that foreground removal prevents measurement
of the PS at scales corresponding to a bandpass larger than 8O0MHz. The cosmic variance
(including the Poisson noise) component is plotted as the thin light curve. The sensitivity
curves are plotted within bins of width Ak = k/10.
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Cosmology parameter estimation

Table 1: 1o Errors on cosmological parameters measured with the Radio Cosmology Telescope,
following Visbal et al. (2008). We assume that 3 fields of view are imaged over the frequency
range corresponding to z=1.2-4.0 (280-640 MHz) and each frequency band within the field
of view has been integrated for 2000 hours. Additional model parameters include a neutrino
hierarchy with one dominant species having a neutrino mass of 0.05eV and a parameteriation
of the neutral hydrogen density to linear order, zur = run + rHi2(z — Zcenter)-

04 Qmh? Qp A2 ns A2 x 1010 4 Qyh? w
Fiducial Values 0.7 U147 0.023 0.05 350 0.0 o.o0054 -1
RCT 0.015 0.013 0.0032 0.027 - 0.012 0.0024 0.087
Planck 0.096  0.0061 0.00024 0.0094 0.27 0.0071  0.0059 0.16
RCT+Planck 0.01 0.00079 0.00018 0.0055 0.22 0.0042 0.00089  0.048
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Roadmap

2010-2011:

* Full antenna simulation

* MOFF FPGA prototype implementation
* Prototype antenna tile

* Detailed design and cost

2012-2013:
* End-to-end demonstration

Looking for a mid-Decade start
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Site selection
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CARPE reference site
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New England radio interference
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Fig 2 Calibrated spectra from the Haystack site, and the Hancock site. The
resolution 1s 100 kHz. The strong signal at 1295 MHz m the Haystack
spectrum 15 from the adjacent Millstone radar, and the signals at

approximately 1195 and 1395 are intermodulation products between the

FM band and the radar. These spectra are an average of 24 hours.
e - Rogers et al. 2005
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Owens Valley radio interference
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FM and TV Strength
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A bit more on foregrounds

Saturday, October 10, 2009



Foreground 2D power spectra
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Figure 11. Two-dimensional power spectra of postsubtraction residuals from dirty maps generated with uniform weighting, For the left column of panels, the

thermal noise has been artificially removed. It is evident that the foreground-only residuals following subtraction are much lu'.ur than the 21 cm signal in the range

ki S3x10 | . beyond which uvn'v:‘[\‘-nds to the outer annulus of poor foreground subtraction in the bottom pancl of FF 1gure 7. Panel (c) confirms that the 21 cm

signal dumm.:lu the recovered power from the full-sky model since it appears ne zarly identical to panel (). The white arcs in panel (f) illustrate the spherical shells of
constant k that are used for the one-dimenssonal power spectrum in Fagure 12
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Foreground subtraction removes signal
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Figure 13. Subtraction characterization factor, f;, for the one-dimensional
binned power spectrum. The characterization factor is shown for three different
levels of polynomial subtraction. As expected, the largest error is for large
spatial modes (low k). Over most scales, however, the correction for our fiducial
third-order polynomial subtraction is only ~ 1%.
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CARPE summary

* Large-N, small-D, high-dwell

« Complementary science goals: DE, Pulsars

* Leverage significant effort in reionization arrays
to mitigate calibration and foreground risks

* Exploit new correlator and DSP capabilities
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