Direct v mass measurements
via beta-decay

Direct measurements of neutrino mass
* Probe of absolute mass
« v oscillations - a major paradigm shift §
* B-decay endpoint and v mass eigenstates |
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Current -decay endpoint results

* INR - Troitsk
* Mainz
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Future prospects for sub-eV sensitivities
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Probes of absolute v mass

e Indirect
— Cosmology - Hot Dark Matter

e Galaxy clusters
e Lyman-a forest
e Galaxy large scale structure
— Astrophysics
 UHE cosmic-rays
e Supernovae generation mechanisms

— Neutrinoless pp-decay

e Direct techniques
— time of flight (supernovae)
— particle decay kinematics




Direct measurements of neutrino mass

Techniques SN1987a

— time of flight from supernovae

* not expected to reach sub-eV sensitivity
Collapse to Black Hole: m = 1.8 eV (Rotation neglected)
Beacom, Boyd, Mezzacappa PRD63 073011
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e much more likely that a direct measurement
or limit will be used to help understand
supernovae dynamics.
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— particle decay kinematics

e [-decay (and e capture) spectrum shape
° muon momentum in pion decay

 invariant mass studies of multiparticle
semileptonic decays

e advantages
— purely kinematical observables

— few, if any, assumptions about v properties
— free of model dependencies
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Past: history of direct v mass measurements
(v flavor eigenstates)

m, < 170 keV (90%CL)
3 ! (PSI 1996)

m, < 18.2 MeV (95% CL)
v (ALEPH 1998)

Mass Limit (eV, keV, or MeV)

m, <2.2 eV (95% CL)
© (Mainz 2000)

1950 1960 1970 1980 1990 2000
Year

points without error bars represent upper limits



Past: history of direct v mass measurements
(v flavor eigenstates)

10°E T T T

But v oscillations
with large mixing
angles - means one
must consider
direct techniques
in terms of v mass
eigenstates!

Mass Limit (eV, keV, or MeV)

1950 1960 1970 1980 1990 2000
Year

points without error bars represent upper limits



v mass & mixing - oscillation experiments

For a 3 neutrino scenario the lepton
mixing matrix (Maki-Nakagawa-Sakata-
Pontecorvo), which relates v mass eigen-
states to weak or flavor eigenstates, is:
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v mass & mixing - oscillation experiments

Best bet for MNSP Matrix:
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B-decay endpoint measurement

Essentially a search for a distortion in the shape
of the b-spectrum 1n the endpoint energy region

10 entire specirum

relative decay amplitude
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electron energy k [keV]

[ mive)=1eV

region close to 3 end point

m(ve) = 0 eV

anly 2 x 107" of all
decays in last 1 eV

dN(E) = KIMPF(ZR E) p.E (E)-E) {(E,-E)>m3 ¢4} dE



B-decay 1n terms of v mass eigenstates

Taking into account v mass eigenstates, the original spectrum
dN(E) = KIMPF(Z.R.E) p.E (E,-E) {(E,-E)?>-m? c4}1/2 dE
becomes
dN(E) = KIMI?F(Z.RE) p.E (E,-E) Z U, 12 {(E,-E)>-m, c4}1/2 dE

The observed beta spectrum shape will depend on:
» the neutrino masses
» the number of neutrino mass eigenstates
» the leptonic mixing matrix elements
> the total resolution/sensitivity of the measurement

For 3 v mass spectrum, with degenerate states, the beta spectrum

simplifies to an “effective mass” : mg*= 21U, 12 mﬁi



All masses linked to I1
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Keys to 3-decay shape measurements

* Statistics and uncertainty budget
— Only 2 103 decays in last 1 eV below endpoint.
— For 10 eV sensitivity, 100 eV?, for 1 eV sensitivity, 1 eV?

— Must reduce backgrounds (~mHz) and ensure that they
are very stable with time.

* One must precisely eliminate or characterize all possible
shape effects
— atomic final state effects

e use atomic or molecular tritium source CH  He + e +4)
e utilize spectrum above atomic states (last 20 eV below endpoint)
— energy loss shape effects

e directly measure
e use only no-loss portion of spectrum (last 9 eV below endpoint)

— 1nstrumental shape effects
e direct measurements, using 33Kr™
e use integral spectrometers with very good resolution (~ eV)



A window to work in

Molecular Excitations Energy loss function
| | | |
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Solenoid Retarding Spectrometer
Magnetic Adiabatic Collimation with Electrostatic Filter (MAC-E)

guiding by magnetic fields
(magnetic adiabatic collimation)

AQ~2 T

electric (retarding-) field :

analysis of electron energies Ty — I [
(electrostatic filter) A VAR
integral transmission : E = Uy '
- = [s-source electrodes solenoid detector
ElIlB

F=(-v)B+qE
M=E, /B=const Pe [ S

adiabatic motion
adiabatic transformation E| — E|



Troitsk trittum pP-decay experiment
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Troitsk Results

Claims there is a step
function anomaly that
varies in both amplitude
and position above the
endpoint.

It is difficult to have much
confidence in their reported
limit

my<2.5 eV (95%CL)
since it requires removing
the step function (excess
counts)

Likely systematic problems
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Lobashev et al., Phys. Lett. B460 227 (1999)



Quench condensed solid T, source

Early results (94) showed
systematic effects, traced to source
film roughening transition.

(fixed by lowering temperature)

95-97 significant background
reduction, signal improvement
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Mainz Systematics Resolved
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Mainz Results

Recent runs (Q5 and greater)
exhibit good reduced y? and

are stable over a varying fit
interval.

Change made to “sweep”
spectrometer backgrounds
between data points starting
at run QS.

Detailed studies published
on source systematics.

mg2=-1.6+2.5 £ 2.1 eV?
my<2.2 eV (95%CL)

A solid result.

eV'/cll l;n.’ [eV*/c]

z
»
|
o o0

&3

.’I [sV/c'] m
oo

S 3

oo
Al

“"51; 15

m,.’I eV'/c*l m
o

3

0.5

18.35

—18.4 1645 185
lower limit of fit interval [keV]

4855

Weinheimer et al., Phys. Lett. B460 219 (1999)



Future p-decay endpoint measurements

« Ultimate sensitivity of spectrometers
— require instrumental resolution of ~ m,/E

— spectral fraction per decay that falls in the last m,, of the
spectrum is ~ (m,/E )’

— source thickness is set by the inelastic scattering cross-
section (3.4 x 10-18 cm?), on < 1

— If one wants ~1 event/day 1n last m,, of the spectrum
 for a 10 m magnetic spectrometer m,~ 1.7 eV

 for a 3 m dia. solenoid retarding field spectrometer m,,~ 0.3 eV

« (Calorimetic detector sensitivity
— evade source-thickness limit, because no e-loss problem

— limited by response time, and eventually pileup

 requires fine segmentation, many detectors

See Wilkerson and Robertson, Direct Measurements of Neutrino Mass, Sect 3.6



planning the next-generation direct v mass experiment

experimental observable in 3-decay is mf,

aim: improvement of m,, by one order of magnitude (3 eV — 0.3eV)

requires : improvement of mﬁ by two orders of magnitude (9 eV?— 0.09 eV2)

iImprove statistics :

- stronger tritium source (factor 40) (& larger analysing plane)
- longer measuring period (~100 days — ~1000 days)

Improve energy resolution :
- large electrostatic spectrometer with AE=1 eV (factor 4 improvement)

but : count rate close to B-end point drops very fast (~6E3)

last 10 eV : 2 x 10710

of total 3-intensity
last 1eV:2x107"3



Karilsruhe Tritium Neutrino Experiment
(KATRIN) arXiv-hep-ex/0109033

next-generation experiment with sub-eV neutrino mass sensitivity

FH Fulda - FZ & U Karlsruhe - U Mainz - INP Prague - INR Troitsk - U Washington

high luminosity background suppression high energy resolution control of systematics
molecular tritium source  pumping pre-filter energy analysis fl-electron counting
MAC-E-(TOF) spectrometer detector

gaseous T, source pre spectrometer
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electrostatic spectrometers - properties and geometry

electrostatic analysis of tritium R-decay electrons (electrode system)
XUHYV - conditions : p < 10" mbar ( degassing rate 10" mbar | / cm? s )

arrcoll

B=2x102T

B=5x10%T

solenoid solenoid

8=3T air coll 8=37
re-spectrometer :
? P _ | main spectrometer
fixed retarding potential 18.4 kV variable retarding potential 18.5-18.6 kV
@G=17m/L=40m F=7m/L=20m
AE =80 eV
AE=1eV

I OG04 {KATRIN J



Technological Challenges

electrostatic spectrometer electron transport
construction large vessel (@=7m, I=20m) > 30 superconducting solenoids
XHV (p < 10°" mbar) IHe and IN, supply (200W cooling power)
HV control & stabilization optimized particle tracking (I > 60 m)
optimized electrode system reliable extinction of tritium (freeze out)
tritium sources solid state detector

stable & safe tritium supply excellent AE/E in high B-field (< 1keV)
high luminosity & reliability good position resolution

control of syst. effects (TOF op., calib.) mK operation of bolometer

experiment will be operational for several years

interdisciplinary solutions are required

] I— {KATRIN [}
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count rate [1/s]

Estimated KATRIN sensitivity for neutrino masses

realistic MC simulation of sub-eV v-mass signal close to sensitivity limit

narrow Interval close to 3 end point (last 5 eV) from WGTS
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input paramters for simulation :

i i N
measuring time . 3 years

AE =1eV (spectrometer)

background rate = 11 mHz

WGTS :
column density 5 x 10" /cm?

max. accepted angle 51°

molecular excitations included
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Systematic Uncertainties 15208

pE-nter®
KATRIN focuses on very narrow region below Eg

(AE=1eV, high T» luminosity). many systematic uncertainties reduced

- no contribution from excited electronic states of 3He-T (8E > 25eV)

- small contribution from inelastic scattering
in source ( for 0E-Interval of 25 eV : 2% of signal from scattered electrons )

+ better vacuum & higher T purity

remaining uncertainties :

- calculations of rotational-vibrational excitations of
SHe-T ground state (0.2% theory uncertainty)

- inelastic scattering of k-electrons in WGTS
(2% uncertainty on G¢,¢, can be improved)

- solid state effects (self-charging of film, neighbour excitations, ...)
only QCTS

- stability of seftings : HV calibration and stabilisation
WGTS activity and T2 -purity

] I— {KATRIN [}



estimates of KATRIN sensitivity for m,,

0.3 0.7
[ -l stat. error 3y (-B-=1y)

025 F —A- systematic error

assumptions for simulation:

AE =1eV (spectrometer)

>
L
£
—e— total error 3y (=-6-=1y) 106 =
02 L e background rate = 11 mHz
= WGTS : pd = 5 x 1017/ cm?
0.15 | {o5 @ area = 29 cm?
Q.
i - max. accepted angle 51°
0.1 | {040 _
Z ° systematic error :
0.05 : 103§ 2% energy loss in WGTS
§ {1 0.2
M .‘- M ) P 2 2 a2 PR 2" 01
-~ my < 0.35 eV (90% CL.)

lower boundary of fit interval (rel. to E;) [eV]
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KATRIN - time schedule

1/2001 first presentation at international workshop at Bad Liebenzell
6/2001 formal founding of KATRIN collaboration

9/2001 Letter of Interest (Lol) submitted hep-ex/0109033
BMBF funding "astroparticle physics' for german universities

9/2002  Complete successful FZK International Panel Review

12/2002 Submission of proposal

2002-03 sytematic studies of background processes and design optimisation
funding requests (HGF, DOE, ...) and reviews
pre-spectrometer measurements and R&D studies

2004-06 set up of spectrometer, solenoid system, transport system, detector
and tritium sources, hall construction, cryo supply

2006 commissioning and begin of data taking

" DU L {KATRIN [H



Summary

All 3 v masses can be probed through the electron neutrino

Present direct limit on mass of v, v,, and vj

e 22¢eV
e Sum<6.6 eV

Direct measurements combined with oscillation and Ov[3f3

decay results can discriminate between a variety of 3 and 4
neutrino mass spectrum scenarios.

KATRIN should be able to achieve sub-eV mass sensitivity
of 0.30 eV, nearly an order of magnitude improvement over
current direct measurements.

Sub-eV direct lab limits yield model independent results that
will likely be serve as strong constraints on astrophysics.



