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The Gibbs Sampling Team So FarThe Gibbs Sampling Team So Far
(alphabetical by institution)(alphabetical by institution)

JPL/Caltech
– Jeff Jewell
– Ian O'Dwyer
– Krzysztof Górski

University of California at Davis
– Lloyd Knox
– Mike Chu

University of Illinois at Urbana-Champaign
– BDW
– Greg Huey
– David Larson

University of Oslo
– Hans-Kristian Eriksen

Others have helped with aspects of this work not directly related to GS:
– Tarun Souradeep and students
– Frode Hansen
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Statistical Challenges of Measuring External Statistical Challenges of Measuring External 
CorrelationsCorrelations

What to do with different masks/observed sky regions?

Optimal use of non-uniformly observed sky area

Optimal combination of different point spread functions in different data sets

Correlated noise

Systematic effects

Estimating parameter posteriors from measured correlations

Significance of a detection?

Is there a way to overcome these challenges ?

You do not want to have to worry about these 
technical issues.
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Bayesian Cosmological Data AnalysisBayesian Cosmological Data Analysis

Cosmological data analysis takes

astronomical observations (D)

and turns them into 

statistical statements about the 
parameters that define our 

Universe (θ)

Conceptually straightforward:

After COBE –for more than a decade– 
the field has had to cope with 
approximations that avoid the 
computational difficulty of evaluating 
the terms in this equation.

P ∣D ∝PD∣P 
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THE COSMOSTATISTICS PROBLEMTHE COSMOSTATISTICS PROBLEM

Black bar: size of data set
Red area: work required to evaluate

P∣D ∝PD∣P 
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THE COSMOSTATISTICS PROBLEMTHE COSMOSTATISTICS PROBLEM

COBE-DMR

10x COBE-DMR

Planck would take 4,000,000 years on a TeraFlop facility    Planck would take 4,000,000 years on a TeraFlop facility    
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Computational Speed of Gibbs SamplingComputational Speed of Gibbs Sampling

Black bar: size of data set
Red area: work required to Gibbs sample



8 External Correlations • May 26,  2006Benjamin D. Wandelt  

Black bar: size of data set
Red area: work required to Gibbs sample

.

Feasible on existing facilitiesFeasible on existing facilities

Computational Speed of Gibbs SamplingComputational Speed of Gibbs Sampling

The computational effort for each 
Gibbs sample is O(N1.5) less than for 
the brute force techniques.

For WMAP and Planck
N ~ 107 →  N1.5 ~ 1010.5

This acceleration is of the same order 
as the approximate (Pseudo-Cℓ) 
techniques. 

Possible optimizations and 
simplifications are very similar to the 
approximate techniques 
(e.g. destriping for 1/f noise;...)
Challenges are also similar (memory, 
disk I/O,...) 
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Gibbs Sampling: How?Gibbs Sampling: How?

Gibbs sampling is a Monte Carlo 
technique for generating samples 
from the likelihood/posterior.

It recovers the results of the full 
Bayesian approach without brute 
force evaluation of the likelihood.

The science products, θ, consist of 
between ~10 and ~100 numbers.

Therefore ~100 – ~10,000 independent 
Gibbs samples characterize the 
detailed information, uncertainty, and 
interdependence in all the CMB 
science products.

    (Jewell, Levin Anderson 2004, 
Wandelt, Larson, Lakshm. 2004; 
Eriksen et al. 2004)
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Why Bayesian analysis?Why Bayesian analysis?

Full statistical distributions for science products (auto-spectra, cross-spectra, 
cosmological parameters).
Full correction and propagation of error for every modeled systematic effect.
Optimal combination of different frequency bands/channels (achieving the best 
resolution, best combined mask, and smallest noise possible).
Foregrounds handled with tunable combination of prior knowledge and data 
dependence
Signal reconstruction and polarization E/B separation “for free”
– use Gibbs sampling to clean out instrumental effects and apply analyses using the  

reconstructed signal.
Can correct for arbitrary beam shapes/point spread function
Can infer noise properties and take into account noise correlations.
– Destriping or full treatment

Exact parameter posterior without intermediate approximation
Gibbs sampling is the only independent, production-quality technique that can 
offer an independent check on approximate results
– All other techniques (MASTER, FASTER, Spice, and polarized versions)  are based 

on the same underlying statistical approach (unbiased, lossy, quadratic estimator)
Any improvement to the instrument model immediately improves all parts of the 
cosmological infererence.

Implemented
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ExamplesExamples

Perfect Data
-

WMAP First Year Data
-

WMAP3
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Perfect DataPerfect Data

What do the error bars from a 
MASTER-like approx. technique 
mean?
Here is an example using perfect, all 
sky data without any noise.
We focus on θ = C4.
In both cases, the solid line shows the 
actual likelihood for Cℓ at ℓ=4.
The samples are obtained using 
Gibbs sampling and by “regular” 
Monte Carlo, like MASTER.
We see the effect of just using a 
single point estimate to simulate the 
uncertainty in the data. 
This is neither frequentist nor 
Bayesian.
Finding the actual frequentist 
confidence ball is extremely costly.
This will be even more important for 
real data.

Gibbs Sampling

MASTER Sampling
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WMAP1: Bayesian Analysis reduces “low power on WMAP1: Bayesian Analysis reduces “low power on 
large scales” from 99.5% to 90% effectlarge scales” from 99.5% to 90% effect

Our analysis demonstrated that 
the power spectrum likelihoods 
at low ℓ have strong tails to 
high Cℓ.

This leads to a probability in 
excess of 10% that the true C2 
is even larger than the WMAP 
best fit C2.

C3 is unremarkable.

(Note: this is due to 
statistics, not Foreground 
marginalization)

P(C2 > x | data)

(O'Dwyer et al. 2005)
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Performance
– We are routinely able to generate 

~5,000 samples per day per channel, 
using 10 parallel samplers and 3 
processors per channel.

Independent techniques
– Very useful check against blind 

separation method (Souradeep) and 
MASTER X-spectra (Hansen)

– We think we are a useful check for 
the WMAP team!

Watch out for our forthcoming results!

WMAP3: Making short work of 12,000,000 PixelsWMAP3: Making short work of 12,000,000 Pixels



15 External Correlations • May 26,  2006Benjamin D. Wandelt  

ConclusionsConclusions

Everyone would perform a full likelihood analysis of CMB data if it was easy.
– All early analyses were performed using Bayesian techniques. Pseudo-Cℓ 

techniques were invented as work-arounds.
– Pseudo-Cℓ techniques are very convenient, but the error bars are “special.” This is 

dangerous when S/N is ~1, which is always what we are most interested in.
Gibbs sampling is a convenient Monte Carlo approach that makes full analysis 
possible again – even for Planck, including cross-correlations with other data.
We are routinely analyzing WMAP-size data of temperature anisotropy on modest 
computational facilities.

Extension to polarization is nearly complete (D. Larson)
Extension to asymmetric beams and correlated noise is being tested (J. Jewell)
Full coupling from maps to parameters will be coming soon.

Most importantly, Bayesian analysis (via Gibbs sampling) enables new science.
– Reconstructed signal maps are useful for measuring higher order and external 

correlations
– What is the P(τ|D) after marginalizing over polarized foregrounds?
– At what significance have the ISW effect/other X-correlations been detected?


